我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

连枷样二尖瓣口返流彩色多普勒血流的三维重建(PDF)

《心脏杂志》[ISSN:1009-7236/CN:61-1268/R]

期数:
1999年第1期
页码:
1-4,7
栏目:
论著
出版日期:
1999-01-01

文章信息/Info

Title:
Three-dimensional reconstruction of color Doppler regurgitant flows of a flail mitral valve: a model study
作者:
周晓东1 钱蕴秋1 朱 霆1 李 军1 Teien D2 Shiota T2 Sahn DJ2
1第四军医大学西京医院超声科 西安 710032 2美国俄勒冈卫生科技大学
Author(s):
Zhou Xiaodong1 Qian yunqiu1 Zhu Ting1Li Jun1 Teien D2 Shiota T2 Sahn DJ2
1Xijing Hospital, Fourth Military Medical University, Xi’an 710032 2Oregon Health Sciences Un iversity, Portland, Oregon, USA
关键词:
二尖瓣 连枷 三维重建 超声心动描记术 多普勒
Keywords:
mitral valve flail three-dimensional reconstruction echocardiographyDoppler
分类号:
-
DOI:
-
文献标识码:
-
摘要:
本研究采用体外血流模型, 模拟连枷样二尖瓣(FMV)口返流,应用常规彩色多普勒血流显像(CDFI)的返流面积与射流和血流会聚区的三维(3D)超声重建及实际返流量进行对比研究, 评价更复杂的血流(脉冲血流通过FMV)状态3D重建的可行性和准确性。被驱动的血流通过一个模拟FMV口,返流口的截面积为0.24 cm2。仪器使用ATL,Interspec Apogee 800 彩色多普勒超声仪, 探头附着在一种机械臂上, 在TomTec 计算机控制下进行0°~180°的旋转扫描获得射流和血流会聚区3D重建的数据。同时磁带记录CDFI图像待后分析。结果显示:CDFI FMV 的返流面积与实际返流容积和最大返流量呈中等相关(r=0.69, SEE=2.2 cm2, P<0.05 和r=0.62,SEE= 2.5cm2, P < 0.05)。3D重建后的返流容积与实际返流容积和最大返流量相关良好(r=0.96, SEE=7.6ml,P< 0.05 和r=0.94,SEE=8.4ml, P<0.01)。血流会聚区3D重建与实际返流容积相关较好(r=0.89, SEE=0.22ml, P<0.01)。结论: 3D重建可减低CDFI的某些限制, 如增益、贴壁返流和混叠速度等, 特别是定量评价和计算返流口复杂形状血流的容积, 3D重建优于CDFI 的方法。
Abstract:
Objestive The aim of the present study was to evaluate the use of measurements of color Doppler jet area, three-dimensional (3D) jet volume and 3D flow convergence region as methods for assessing the possiblity and accuracy of 3D reconstruction of a more complex flow situation: pulsat ive flow through a simulated flail mitral valve (FMV). Methods: Four different flows (10,20,40 and 60 ml/beat) were driven into a previously described flow model using a Harvard Pulsative Blood Pump model. The flow was driven through a disk simulating a flail orifice valve. The cross sectional area of the regurgitant orifice was 0.24 cm2. The flow convergence towards the orifice and the regu rgitant jet were imaged using an ATL/Interspec ultrasound system (Apogee RX 800). The 3D was acquired using a rotation scan strategy with the transducer mounted on a mechanical arm and rotated from 0。to 180。.Under control of a Tom Tec computer,two2-dimensional (2D) ultrasound images were recorded on 0.5 inch video tape simultaneously with the rotational acquisition. Results: The correlation between the maximal jet area and the regurgitant volume/beat, the maximal volumetric flow rate were moderate (r=0.69, SEE=2.2cm2, P<0.05; r=0.62, SEE=2.5 cm2, P< 0.05; r=0.71 respect ively). A close correlation was found between the 3D reconstruction of the maximal regurgitant jet volume and the maximal volumetric flow rate (r=0.96, SEE=7.6ml,P< 0.05). Similar results were found wwhen the jet volume was compared to the regurgitant volume/beat and the driving velocity (r=0.94, SSEE=8.4 ml, P<0.01). There was a significant correlation between the volume of the flow convergence and the regurgitant volume/beat, the maximal volumetric flow rate (r=0.89, SEE=0.22 ml,P<0.01).Conclusion: The result of the 3D reconstruction of regurgitant jet are superior to 2D maximal jet areas. However, 3D reconstruction flow event are encumbered with the limitation of 2D Colo rDoppler i-e,,gain settings. Central jets versus jets adjacent to walls and Nyquist limits. Measurement from a 3D reconstructed flow convergence region may be superior to measurement s from 2D Color Doppler recordings to calculate volume flow of a more complex flow situation.

参考文献/References

[1]Croft CH, Lipscomb K, Mathis K, et al. Limitations of qualitative angiographic grading in aortic or mitral regurgitation. Am J Cardiol, 1984; 53: 1593.

[2]Maciel BC, Moises VA , Shandas R, et al. Effect of pressure and volume of the receiving hamber on the spatial distribution of regurgitant jets as imaged by color Doppler flow mapping: an in vitro study. Circulation, 1991; 83 (2) : 605.

[3]Chao K, Moises VA , Shandas R, et al. Influence of the Coanda effect on color Doppler jet area and color encoding: in vitro studies using color Doppler flow mapping. Circulation, 1992; 85 (1) :333.

[4]Zhang J,Shiota T, Shandas R, et al. The effect of different shaped adjacent surface on regurgitant jet area: comparison between color Doppler images and laser-induced fluorescent dye visualization. J Am Coll Cardiol, 1993; 22 (5) : 1522.

[5]Shiota T, Jones M , Teien D, et al. Color Doppler regurgitant jet area for evaluating eccentric mmitral regurgitation: An animal study with quantified mitral regurgitation. J Am Coll Cardiol, 1994; 24 (3) : 813.

[6]Schwartz SL , Cao QL , Azevedo J , et al. Simulation of intraoperative visualization of cardiac sstructures and study of dynamic surgical anatomy with real-time three-dimensional eechocardiography. Am J Cardiol, 1994; 73 (7) : 501.

[7]Vogel M , Losch S. Dynamic three-dimensional echocardiography with a computed tomography imaging probe: initial clinical experience with transthoracic application in infants and children with congenital heart defects. Br Heart J , 1994; 71 (5) :462.

[8]Shiota T, Sahn DJ , Shuping Ge, et al. Three-dimensional reconstruction of color Doppler flow convergence regions and regurgitant jets: An in vitro study. AHA 67th Scientific Session,1994; (abstract).

[9]Shiota T, Teien D, Deng YB, et al. Estimation of regurgitant flow volume based on centerline velocity/distance profiles using digital color M-Q doppler: Application to orifices of different shapes. J Am Coll Cardiol, 1994; 24 (2) : 440.

[10] Cape EG, Yoganathan AP, Levine RA. Increase heart rate can cause underestimation of regurgitant jet size by Doppler color flow mapping. J Am Coll Cardiol, 1993; 21 (4) : 1029.

备注/Memo

备注/Memo:
(收稿1998-09-16 修回1998-10-12)
更新日期/Last Update: 1999-01-01