可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:
[1]Silverman HS, Stern MD. Ionic basis of ischemic cardiac injury: insights form cellular studies. Cardiovasc Res, 1994; 28 (5) : 581.
[2]Hearse DJ. Abrup treoxygenation of the anoxia potassium-arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol, 1973; 5 (4) : 395.
[3]Ganote CE, Kaltenbach JP. Oxygen-induced enzyme release: early events and proposed mechanism. J Mol Cell Cardiol, 1979; 11 (4) :389.
[4]Bottari SP, Taylor V , King IN , et al. Angiotensin ⅡAT2 receptor do not interact with guanine nucleotide binding proteins. Eur J Pharmacol, 1991; 207 (2) : 157Altschuld RA , Hostetler JR, Brierley GP. Response of isolated rat heart cells to hypoxia. re-oxygenation, and acidosis. Circ Res,1981; 49 (2) : 307.
[5]Piper HM , Schwartz P, Spahr R, et al. Absence of reoxygenation damage in isolated heart cells after anoxic injury. Pflugers Arch,1984; 401 (1) : 71.
[6]Stern MD, Chien AM , Capogrossi MC, et al. Direct observation of the“oxygen paradox”in single rat ventricular myocytes. Circ Res,1985; 56 (6) : 899.
[7] Silverman HS,Lakatta EG, Stern MD. Contrasting effects of anoxia and graded hypoxia on single cardiac myocyte function. Am J Cardiovasc Pathol, 1992; 4 (3) : 256.
[8]Hayashi H, Terada H, Mcdonald TF. Arrhythmia and electrical heterogeneity during prolonged hypoxia in guinea pig papillary muscles. Can J Physiol Pharmacol, 1997; 75 (1) : 44.
[9]Allshire A , Piper HM , Cuthbertson KSR, et al. Cytosolic free Ca2+ in single rat heart cells during anoxia and reoxygenation.Biochem J , 1987; 244 (2) : 381.
[10]Li Q ,Altschuld QA , Stokes QT. Myocyte deenergization and intracellular free calcium dynamics. Am J Physiol, 1988; 255 (2 pt 1) :c162.
[11]Miyata H, Lakatta EG, Stern MD, et al. Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res, 1992; 71 (3) : 605.
[12]Murphy JG, Smith TW ,Marsh JD. Mechanisms of reoxygenationinduced calcium overload in cultured chick embryo heart cells. Am J Physiol, 1988; 254 (6 pt 2) : H1133.
[13]Ziegelstein RC, Zweier JL ,Mellits D, et al. Dimethlthiourea, an oxygen radical scavenger, protects isolated cardiac myocytes from hypoxic injury by inhibition of Na+ -Ca2+ exchange and not by its antioxidant effects. Circ Res, 1992; 70 (4) : 804.
[14]Holt E, Christensen G, Transient Ca2+ overload salters Ca2+ handling in rat cardiomyocytes: effects on shortening and relaxation.Am J Physiol, 1997; 273 (2 pt 2) : H573.
[15]Tani M ,Neerly JR. Role of intracellular Na+ in Ca2+ overload anddepressed recovery of ventricular function of H+ 2Na+ and Na+Ca2+ exchange. Circ Res, 1995; 65 (4) : 1045.
[16]Pierce GN , Czubryt MP. The contribution of ionic imbalance to ischemia/reperfusion-induced injury. J Mol Cell Cardiol, 1995; 27(1) : 53.
[17]Mejia-Alvarez R,Marban E. Mechanisms of the increase in intracellular sodium during metabolic inhibition: direct evidence against mediation by voltage-dependent sodium channels. J Mol Cell Card iol,1992; 24 (11) : 1307.
[18]Ju YK, Saint DA , Gage PW. Hypoxia increase persistent sodium current in rat ventricular myocytes. J Physiol (Lond) , 1996; 497 (pt 2) : 337.
[19]Weiss JN ,Vencatesh N ,Lamp ST. ATP sensitive K+ channels and cellular K+ lost in hypoxia and ischemia mammalinan ventricle. J Physiol (Lond) , 1992; 447: 649.
[20]Wilde AA , Janse MJ. Electrophysiological effects of ATP-sensitive potassium channel modulation: implications for arrhythmogenesis.Cardiovasc Res, 1994; 28 (1) : 16.