我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

β3肾上腺素受体介导的脂解作用与缺血性心衰的关系(PDF)

《心脏杂志》[ISSN:1009-7236/CN:61-1268/R]

期数:
2006年第6期
页码:
705-709
栏目:
综述
出版日期:
2006-12-25

文章信息/Info

Title:
β3-adrenergic receptormediated lipolysis and ischemic heart failure
作者:
潘红星谭学瑞
汕头大学医学院第一附属医院心内科,广东 汕头 515041
Author(s):
PAN Hong-Xing TAN Xue-Rui
Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou ,Guangdong 515041,China
关键词:
β3肾上腺素受体脂解作用心力衰竭缺血性
Keywords:
β3-adrenergic receptor lipolysis heart failureischemic
分类号:
R541.6
DOI:
-
文献标识码:
A
摘要:
β3肾上腺素受体(β3AR)是新发现的受体,主要参与脂肪组织甘油三酯的降解,产生能量;心衰时心脏中β3AR上调;心肌缺血缺氧时,内源性脂解作用可维持心肌的收缩性;为了维持心功能慢性缺血性心衰代偿期很可能存在能量代谢重建:在神经内分泌激活的同时,以外源性游离脂肪酸(FFA)为主要能量底物,心脏缺血缺氧进一步加重时,β3AR代偿性上调并介导心肌细胞的内源性脂解供能,葡萄糖经由3磷酸甘油参与合成内源性三酰甘油再脂解而间接供能,葡萄糖的氧化被抑制,此时心肌细胞兼有类似脂肪细胞的功能。心衰时β3AR上调是能量代谢代偿的结果。但上调的β3-AR长期过度激活有可能引起心肌组织继发性肉碱缺乏,导致ATP生成障碍使心衰失代偿,因而在心衰失代偿期β3AR阻滞剂可能有利于缓解心衰。而(β3-AR激动药最终表现为正性肌力作用还是负性肌力作用,要看在具体的作用部位它对 β3AR的直接效应与其对胰岛素的继发效应二者的力量对比)。 从理论上讲,β3- AR激动药用于慢性缺血性心衰代偿期,既可改善心肌的能量代谢,产生正性肌力作用,又可降低动脉血压,降低心脏的前负荷,从而改善心功能;β3-AR激动药还可改善与心衰并存的胰岛素抵抗。心脏能量代谢的缺陷越来越被认为在心衰的进展中起着重要的决定性作用,心脏的代谢适应和适应不良是很有前景的药物治疗新靶点。
Abstract:
The newly-discovered β3adrenergic receptor (β3AR) is mainly involved in energy production via lipolysis in adipose tissue; the lipolysis of endogenous triacylglycerols in myocardium contributes to the maintenance of myocardial contractility. During the compensation of ischemic heart failure, there exists the efficient and enhanced energy metabolism shortcut: accompanying the activation of the nerveendocrine system, the failing heart utilizes exogenous free fatty acid as the predominant energy substrate ; while myocardial ischemia deteriorates further, the compensatorilyupregulated β3AR in myocardium mediates endogenous lipolysis to provide energy; glucose indirectly produces energy via its rapid shift to glycerol 3phosphate to form endogenous triacylglycerols; glucose oxidation is inhibited and myocardial cells concurrently function as the adipocytes. The upregulation of β3AR in failing heart may result from compensation of myocardial energy metabolism. But the constant activation of the upregulated β3AR may result in secondary carnitine insufficiency in myocardium. This contributes to reduced energy production and decompensated cardiac function. Therefore, β3AR antagonist can help improve cardiac function during decompensation. The ultimate inotropic effect of β3AR agonist depends on which one of its two effects, direct effect on β3AR or secondary effect on insulin, is advantaged at the specific action site in the body. Theoretically, during compensation, β3AR agonist strengthens cardiac function by ameliorating energy metabolism, causing positive inotropic effect and decreasing blood pressure which is the preload of the heart. Meanwhile, β3AR agonist can reduce the concomitant insulin resistance of the heart. Defects in energy metabolism are increasingly considered as a important determinant in the progression of heart failure. Promisingly, pharmacotherapy might be targeted at metabolic adaptation and maladaptation of the heart.

参考文献/References

[1] Taegtmeyer H. Metabolism-the lost child of cardiology[J]. J Am Coll Cardiol , 2000, 36(4):1386-1388.

[2] Gavrilova O, MarcusSamuels B, Reitman ML. Lack of responses to a beta3adrenergic agonist in lipoatrophic AZIP/F1 mice[J]. Diabetes , 2000, 49(11): 1910-1916.

[3] Del Monte F, Williams E, Lebeche D, et al . Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca2+ATPase in a rat model of heart failure[J]. Circulation, 2001, 104(12):1424-1429.

[4] Hasenfuss G, Maier LS, Hermann HP, et al . Influence of pyruvate on contractile performance and Ca2+ cycling in isolated failing human myocardium[J]. Circulation, 2002, 105(2):194-199.

[5] VenturaClapier R, Garnier A, Veksler V. Energy metabolism in heart failure[J]. J Physiol, 2003, 555(pt1):1-13.

[6] Cheng HJ, Zhang ZS, Onishi K, et al . Upregulation of functional β3adrenergic receptor in the failing canine myocardium[J]. Circ Res, 2001, 89(7): 599-606.

[7] Arch JR. β3Adrenoceptor agonists: potential, pitfalls and progress[J]. Eur J Pharmacol, 2002, 440(23): 99-107.

[8] Sole MJ, Jeejeebhoy KN. Conditioned nutritional requirements and the pathogenesis and treatment of myocardial failure[J]. Curr Opin Clin Nutr Metab Care, 2000, 3 (6) : 417-424.

[9] Jeejeebhoy F, Keith M, Freeman M, et al . Nutritional supplementation with myovive repletes essential cardiac myocyte nutrients and reduces left ventricular size in patients with left ventricular dysfunction[J]. Am Heart J , 2002, 143 (6): 1092-1100.

[10]Tavernier G, Toumaniantz G, Erfanian M, et al . beta3Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3adrenergic receptor[J]. Cardiovasc Res, 2003, 59(2): 288-296.

[11]Pott C, Brixius K, Bundkirchen A, et al . The preferential beta3adrenoceptor agonist BRL 37344 increases force via beta1/beta2adrenoceptors and induces endothelial nitric oxide synthase via beta3adrenoceptors in human atrial myocardium[J]. Br J Pharmacol, 2003, 138(3): 521-529.

[12]Kohout TA, Takaoka H, McDonald PH, et al . Augmentation of cardiac contractility mediated by the human beta(3)adrenergic receptor overexpressed in the hearts of transgenic mice[J]. Circulation, 2001, 104(20): 2485-2491.

[13]Hom GJ, Forrest MJ, Bach TJ, et al . Beta(3)adrenoceptor agonistinduced increases in lipolysis, metabolic rate, facial flushing, and reflex tachycardia in anesthetized rhesus monkeys[J]. J Pharmacol Exp Ther, 2001, 297(1): 299-307.

[14]Conrath CE, Opthof T. beta3Adrenoceptors in the heart[J]. Cardiovasc Res, 2002, 56(3): 353-356.

备注/Memo

备注/Memo:
收稿日期:2006-03-07.supported by science and technology progran of Guangdong Province(No.2003C30613) Correspondence to:TAN Xue-rui Tel: 0754-8552841 Email:tanxuerui@vip.sina.com
更新日期/Last Update: