可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:
[1] Sempere LF, Fremantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal diferentiation[J]. Genome Bioz, 2004, 5(3):R13.
[2] Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129 (2):303-317.
[3] Kwon C, Han Z, Olson EN, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signalin g [J]. Proc Natl Acad Sci USA, 2005, 102(52):18986-189991.
[4] Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature, 2005, 436(7048):214-220.
[5] Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypertrophy[J]. Circ Res, 2007, 100(3):416-24.
[6] Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy[J]. Nat Med, 2007, 13(5):613-618.
[7] Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet, 2006, 38(2):228-233.
[8] Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiachypertrophy[J]. Nat Med, 2007, 13(5):613-618.
[9] Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart. Do they play a role in cardiac hypertrophy? [J]. Am J Pathol, 2007, 170(6):1831-1840.
[10]van Rooij E. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure[J]. Proc Natl Acad Sci USA, 2006, 103(48):18255-18260.
[11] van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA[J]. Circ Res, 2007, 100(11):1579-1588.
[12]Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation[J]. Circ Res, 2007, 100(11):1579-1588.
[13] Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis[J]. Circ Res, 2007, 101(1):59-68.
[14]Suárez Y, Fernández-Hernando C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells[J]. Circ Res, 2007, 100(8):1164-1173.
[15]Martin MM, Buckenberger JA, Jiang J, et al. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microRNA-155 binding[J]. J Biol Chem, 2007, 282(33):24262-24269.
[16]O’Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response[J]. Proc Natl Acad Sci USA, 2007, 104(5):1604-1609.
[17]吴明,王安才. 血管重构与临床[J]. 心脏杂志, 2005, 17(2):160-162,165.
[18]Xiao J, Luo X, Lin H, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts[J]. J Biol Chem, 2007, 282(17):12363-12367.
[19]Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2[J]. Nat Med, 2007 ,13(4):486-491.
[20]Naraba H, Iwai N. Assessment of the microRNA system in salt-sensitive hypertension[J]. Hypertens Res, 2005, 28(10):819-826.