我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

血管紧张素Ⅱ1型受体拮抗剂氯沙坦降低自发性高血压大鼠血管的肌源性紧张度的作用

《心脏杂志》[ISSN:1009-7236/CN:61-1268/R]

期数:
2010年第6期
页码:
838-841
栏目:
基础研究
出版日期:
2010-08-23

文章信息/Info

Title:
Angiotensin II type-1 receptor blockade decreases arterial myogenic tone in spontaneously hypertensive rats
作者:
林乐健唐发宽
解放军第309医院心内科,北京 100091
Author(s):
LIN Le-jian TANG Fa-kuan
Department of Cardiology, PLA 309 Hospital, Beijing 100091, China
关键词:
血管肌源性紧张度自发性高血压血管紧张素Ⅱ1型受体氯沙坦大鼠
Keywords:
myogenic tone spontaneously hypertensive rats angiotensin II type 1 receptor losartan
分类号:
R544.1
DOI:
-
文献标识码:
A
摘要:
目的: 观察血管紧张素Ⅱ(AngⅡ)1型受体阻断剂氯沙坦对自发性高血压(SH)大鼠大脑中动脉血管肌源性紧张度的影响。方法: 16只SH Wistar大鼠随机分为SH组(n=8)和30 mg/(kg·d)氯沙坦干预(LI)组(n=8),另以8只正常WKY大鼠作为对照组,10周后,采用压力型小动脉测量仪在含2.5 mmol/L Ca2+或无Ca2+的生理盐溶液中,测量不同管腔压力下血管的主动态管径(active diameter,Da)和被动态管径(passive diameter,Dp)。肌源性紧张度以(Dp-Da)/Dp×100%表示。结果: SH大鼠大脑中动脉血管的肌源性紧张度同对照组相比升高67.9%,每天通过灌胃给予30 mg/(kg·d)的氯沙坦能够使SH大鼠大脑中动脉血管的肌源性紧张度降低24.9%。结论: SH大鼠大脑中动脉血管的肌源性紧张度同对照组相比显著增加,每天给予30 mg/(kg·d)的氯沙坦能够防止这种改变,说明肾素-血管紧张素-醛固酮系统参加了SH大鼠血管功能的重建过程,AngⅡ1型受体是其中重要的信号转导通路。
Abstract:
AIM:To investigate the effects of angiotensin II type-1 receptor blocker on arterial myogenic tone of spontaneously hypertensive rats (SHR). METHODS: Sixteen SHR rats (8 weeks of age) were randomly divided into losartan 30 mg/(kg·day) group (SHR+L) and normal SHR group (SHR), and eight sex- and age-matched Wistar rats were assigned to control group (CON). Rats assigned to CON and SHR groups received vehicle (distilled water) by gavage, and distilled water containing losartan at 30 mg/(kg·day) was administered to rats in SHR+L groups. After 10 weeks, segments of middle cerebral artery were isolated and then cannulated to two pipettes. Vascular diameters in response to the increased intraluminal pressure (from 0 mmHg to 125 mmHg in 25-mmHg increments) of isolated middle cerebral arteries under no-flow conditions were recorded by a Pressure Myograph System both in physiological salt solution (PSS) (active diameter, Da) and calcium-free PSS (passive diameter, Dp). Myogenic tone was calculated by (Dp-Da)/Dp×100%. RESULTS: Myogenic tone responsiveness of middle cerebral artery in SHR group increased significantly compared with that in CON group, with 30 mg/(kg·day) losartan treatment in SHR+L group. This enhancement may be partially prevented. CONCLUSION: RAS (spell out) participates in arterial function remodeling in SHRs. Chronic AT1 receptor antagonist therapy with losartan markedly reduces the changes of function in SHRs.

参考文献/References

[1]DAngelo G, Meininger GA. Transduction mechanisms involved in the regulation of myogenic activity[J]. Hypertension, 1994, 23(6 Pt 2):1096-1105.

[2]Johnson PC. Principles of peripheral circulatory control[M]// Johnson PC. Peripheral circulation. New York: Wiley,1978:111-139.

[3]Osol G, Laher I, Kelley M. Myogenic tone is coupled to protein kinase C and G protein activation in small cerebral arteries[J]. Am J Physiol Heart Circ Physiol, 1993, 265(1):H415-H420.

[4]Savoia C, Schiffrin El. Inflammation in hypertension[J]. Curr Opin Nephrol Hypertens, 2006, 15(2):152-158.

[5]Osol G, Halpern W. Myogenic properties of cerebral blood vessel from normotensive and hypertensive rats[J]. Am J Physiol Heart Circ Physiol, 1985, 249(5):H914-H921.

[6]Peng H, Matchkov V, Ivarsen A, et al. Hypothesis for the Initiation of Vasomotion[J]. Circ Res, 2001, 88(8):810-815.

[7]Yuan XJ, Rubin LJ. Altered expression and function of Kv channels in primary pulmonary hypertension[M]// Archer SL, Rusch NJ. Potassium channels in cardiovascular biology. New York: Kluwer Academic/Plenum Publishers, 2001:821-836.

[8]Cox RH, Rusch NJ. New expression profiles of voltage-gated ion channels in arteries exposed to high blood pressure[J]. Microcirculation, 2002, 9(4):243-257.

[9]Folkow B. Structure and function of the arteries in hypertension[J]. Am Heart J, 1987, 14(10): 938-948.

[10]Bao JX, Zhang LF, Ma J. Angiotensinogen and AT1R expression in cerebral and femoral arteries during hindlimb unloading in rats[J]. Aviat Space Environ Med, 2007, 78(9):852-858.

[11]Xue JH, Zhang LF, Ma J, et al. Differential regulation of L-type Ca2+ channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing[J]. Am J Physiol Heart Circ Physiol, 2007, 293(1):691-701.

[12]Yao YJ, Jiang SZ, Jiang CL, et al. Effects of Thigh Cuffes on haemodynamics changes of the middle cerebral artery and on orthostatic intolerance induced by 10 ds head-down bed rest[J]. Clin Exp Pharmacol Physiol, 2008, 35(10):1178-1182.

[13]Platoshyn O, Golovina VA, Bailey CL, et al. Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation[J]. Am J Physiol Cell Physiol, 2000, 279(5):C1540-C1549.

[14]Lehoux S, Tedgui A. Cellular mechanics and gene expression in blood vessels[J]. J Biomech, 2003, 36(5):631-643.

备注/Memo

备注/Memo:
收稿日期:2009-10-06.通讯作者:唐发宽,主任医师, 主要从事心血管疾病研究Email:tfk616@yahoo.com.cn 作者简介:林乐健,医师,硕士Email:lejianlin118@gmail.com
更新日期/Last Update: 2010-08-22