可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:
[1]Maldonado N,Kelly-Arnold A,Vengrenyuk Y,et al.A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability:potential implications for plaque rupture[J].Am J Physiol Heart Circ Physiol,2012, 303(5):H619-H628.
[2]Hjortnaes J,Butcher J,Figueiredo JL,et al.Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling:a role for inflammation[J].Eur Heart J,2010,31(18):1975-1984.
[3]Aikawa E,Nahrendorf M,Figueiredo JL,et al.Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo[J].Circulation,2007,116(24):2841-2850.
[4]Roijers RB,Debernardi N,Cleutjens JP,et al.Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries[J].Am J Pathol,2011,178(6):2878-2887.
[5]Shanahan CM,Crouthamel MH,Kapustin A,et al.Review Arterial calcification in chronic kidney disease:key roles for calcium and phosphate[J].Circ Res,2011,109(6):697-711.
[6]Menini S,Iacobini C,Ricci C,et al.The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis[J].Cardiovasc Res,2013,100(3):472-480.
[7]Cardoso L,Weinbaum S.Changing views of the biomechanics of vulnerable Plaque Rupture: A Review[J].Ann Biomed Eng,2014,42(2):415-431.
[8]Cheng GC, Loree HM,Kamm RD,et al.Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation[J].Circulation,1993,87(4):1179-1187.
[9]Akyildiz AC, Speelman L,van Brummelen H,et al.Effects of intima stiffness and plaque morphology on peak cap stress[J].J Biomed Eng Online,2011,10:25.
[10]Vengrenyuk Y,Cardoso L,Weinbaum S.Micro-CT based analysis of a new paradigm for vulnerable plaque rupture:cellular microcalcifications in fibrous caps[J].Mol Cell Biomech,2008,5(1):37-47.
[11]Maldonado N,Kelly-Arnold A,Vengrenyuk Y,et al.A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability:potential implications for plaque rupture[J].Am J Physiol Heart Circ Physiol,2012,303(5):H619-H628.
[12]Cilla M, Monterde D, Pe?a E,et al.Does microcalcification increase the risk of rupture?[J].Proc Inst Mech EngH,2013,227(5):588-599.
[13]Kelly-Arnold A,Maldonado N,Laudier D,et al.Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries[J].Proc Natl Acad Sci U S A,2013,10(26):10741-1076.
[14]Li ZY,Howarth S,Tang T,et al.Does calcium deposition play a role in the stability of atheroma? Location may be the key[J].Cerebrovasc Dis,2007,24(5):452-459.
[15]Wenk JF,Papadopoulos P,Zohdi TI.Numerical modeling of stress in stenotic arteries with microcalcificatons:a micromechanical approximation[J].J Biomech Eng,2010,132(9):091011.
[16]Bluestein D,Alemu Y,Avrahami I,et al.Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling[J].J Biomech,2008,41(5):1111-1118.
[17]Maldonado N,Kelly-Arnold A,Cardoso L,et al.The explosive growth of small voids in vulnerable cap rupture;cavitation and interfacial debonding[J].J Biomech,2013,46(2):396-401.
[18]Bobryshev YV,Killingsworth MC,Lord RS,et al.Matrix vesicles in the fibrous cap of atherosclerotic plaque:possible contribution to plaque rupture[J].J Cell,2008,12(5B):2073-2082.
[19]New SE,Goettsch C,Aikawa M,et al.Macrophage-derived matrix vesicles:an alternative novel mechanism for microcalcification in atherosclerotic plaques[J].Circ Res,2013,113(1):72-77.