可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:
[1]Mackenzie NC,Staines KA,Zhu D,et al.miRNA-221 and miRNA-222 synergistically function to promote vascular calcification[J].Cell Biochem Funct,2014,32(2):209-216.
[2]Cui RR,Li SJ,Liu LJ,et al.MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo[J].Cardiovasc Res,2012,96(2):320-329.
[3]Li P,Liu Y,Yi B,et al.MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1[J].Cardiovasc Res,2013,99(1):185-193.
[4]Coleman CB,Lightell DJ Jr,Moss SC,et al.Elevation of miR-221 and -222 in the internal mammary arteries of diabetic subjects and normalization with metformin[J].Mol Cell Endocrinol,2013,374(1-2): 125-129.
[5]Gui T,Zhou G,Sun Y,et al.MicroRNAs that target Ca(2+) transporters are involved in vascular smooth muscle cell calcification[J].Lab Invest,2012,92(9):1250-1259.
[6]Fadini GP,Rattazzi M,Matsumoto T,et al.Emerging role of circulating calcifying cells in the bone-vascular axis[J].Circulation,2012,125(22):2772-2781.
[7]Goettsch C,Hutcheson JD,Aikawa E.MicroRNA in cardiovascular calcification:focus on targets and extracellular vesicle delivery mechanisms[J].Circ Res,2013,112(7):1073-1084.
[8]Wen P,Cao H,Fang L,et al.miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smooth muscle cells in a high-phosphate environment[J].Exp Cell Res,2014,322(2):302-312.
[9]Rangrez AY,M' Baya-Moutoula E,Metzinger-Le MV,et al.Inorganic phosphate accelerates the migration of vascular smooth muscle cells:evidence for the involvement of miR-223[J].PLoS One,2012,7(10):e47807.
[10]Lim K,Lu TS,Molostvov G,et al.Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23[J].Circulation,2012,125(18):2243-2255.
[11]Rangrez AY,Massy ZA,Metzinger-Le MV, et al. miR-143 and miR-145: molecular keys to switch the phenotype of vascular smooth muscle cells[J]. Circ Cardiovasc Genet, 2011, 4(2):197-205.
[12]Taibi F,Metzinger-Le MV,Massy ZA,et al.miR-223:An inflammatory oncomiR enters the cardiovascular field[J].Biochim Biophys Acta,2014,1842(7):1001-1009.
[13]Taibi F,Metzinger-Le MV, M' Baya-Moutoula E,et al.Possible involvement of microRNAs in vascular damage in experimental chronic kidney disease[J].Biochim Biophys Acta,2014,1842(1):88-98.
[14]Liu X,Cheng Y,Yang J,et al.Flank sequences of miR-145/143 and their aberrant expression in vascular disease:mechanism and therapeutic application[J].J Am Heart Assoc,2013,2(6):e000407.
[15]Davis-Dusenbery BN,Chan MC,Reno KE,et al.down-regulation of Kruppel-like factor-4(KLF4)by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4[J].J Biol Chem,2011,286(32):28097-28110.
[16]Fiedler J,Stohr A,Gupta SK,et al.Functional microRNA library screening identifies the hypoxamir miR-24 as a potent regulator of smooth muscle cell proliferation and vascularization[J].Antioxid Redox Signal,2014,21(8):1167-1176.
[17]Byon CH,Sun Y,Chen J,et al.Runx2-upregulated receptor activator of nuclear factor kappaB ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages[J].Arterioscler Thromb Vasc Biol,2011,31(6):1387-1396.
[18]Eirin A,Riester SM,Zhu XY,et al.MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells[J].Gene,2014,551(1):55-64.
[19]Nair R,Santos L,Awasthi S,et al.Extracellular vesicles derived from preosteoblasts influence embryonic stem cell differentiation[J].Stem Cells Dev,2014,23(14):1625-1635.