我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

Parkin介导的线粒体自噬在高糖高脂导致的心肌细胞损伤中的保护作用(PDF)

《心脏杂志》[ISSN:1009-7236/CN:61-1268/R]

期数:
2017年第4期
页码:
382-388
栏目:
基础研究
出版日期:
2017-02-25

文章信息/Info

Title:
Protective role of Parkin-mediated mitophagy in cardiomyocyte injury induced by high glucose and high fat
作者:
高蓓蕾1张国勇1余文军2黎 翔1林 晨1王婷婷1张英梅1
1.第四军医大学西京医院心血管内科,陕西 西安 710032;2.解放军第306医院心内科,北京 100101
Author(s):
GAO Bei-lei1 ZHANG Guo-yong1 YU Wen-jun2 LI Xiang1 LIN Chen1 WANG Ting-ting1 ZHANG Ying-mei1
1.Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China; 2.Department of Cardiology, 306th Hospital of PLA, Beijing 100101, China
关键词:
E3泛素化连接酶线粒体自噬糖尿病心肌病
Keywords:
Parkin mitophagy diabetic cardiomyopathy
分类号:
R392.3
DOI:
-
文献标识码:
A
摘要:
目的 明确Parkin(一种E3泛素化连接酶)介导的线粒体自噬对高糖高脂导致的原代心肌细胞损伤的保护作用。方法 以LV-lacZ(LacZ空病毒)或LV-Parkin(Parkin过表达慢病毒)转染SD大鼠原代心肌细胞48 h,再用含葡萄糖(5.5 mmol/L NG)的培养基或含棕榈酸盐(500 μmol/L HF)和葡萄糖(25 mmol/L HG)的高糖高脂培养基培养心肌细胞24 h。 实验分组:①阴性对照组(NG-LacZ),②正常Parkin过表达组(NG-Parkin),③高糖高脂阴性对照组(HG-HF-LacZ),④高糖高脂Parkin过表达组(HG-HF-Parkin)。用Western blot法检测PTEN介导的假定激酶蛋白1(PINK1)、Parkin、P62(一种自噬相关蛋白)、微管相关蛋白1轻链3(LC3)蛋白表达水平。采用JC-1染色法检测活细胞内线粒体膜电位水平。免疫荧光法检测自噬体数量,TUNEL法检测细胞凋亡率。结果 与对照组相比,高糖高脂处理的原代心肌细胞自噬相关蛋白LC3-II,P62表达水平上调(P<0.05),PINK1表达未发生统计学差异,Parkin表达水平下调(P<0.05),自噬体数量增多,线粒体膜电位下降功能损伤,心肌细胞凋亡率升高(P<0.05)。而用高糖高脂处理LV-Parkin转染的心肌细胞,LC3-II蛋白表达水平进一步升高(P<0.05),而P62表达水平显著下降(P<0.05),自噬体数量进一步增多,细胞内线粒体膜电位水平上升,心肌细胞凋亡率下降(P<0.05)。结论 高糖高脂可引起SD大鼠原代心肌细胞自噬流量降低,自噬小体增多,线粒体自噬发生障碍。Parkin过表达慢病毒通过激活心肌细胞内线粒体自噬途径,提高自噬流量,改善线粒体功能,降低心肌细胞凋亡率。
Abstract:
AIM To determine the role of Parkin-mediated mitophagy in cardiomyocytes exposed to high glucose and saturated fatty acid stimulation. METHODS Neonatal mouse ventricular myocytes were separated and cultured in DMEM with normal (5.5 mmol/L) dose of glucose. LV-LacZ or LV-Parkin was transfected into cardiomyocytes. After transfected for 48 hrs, cardiomyocytes were cultured in DMEM with normal (5.5 mmol/L) or high dose of glucose (25 mmol/L HG) and palmitate (16:0; 500 μmol/L HF) for 24hrs. So we divided the experiment into four groups: ①NG-LacZ; ②NG-Parkin; ③HG-HF-LacZ; ④HG-HF-Parkin. The expression of proteins was analyzed by Western blot and the number of autophagosomes was counted by immunofluorescence. The mitochondrial membrane potential was measured by JC-1 staining and the apoptotic index was evaluated by TUNEL.RESULTS Compared with that in control group, mitophagy associated protein Parkin was significantly reduced by high glucose and high palmitate( P<0.05), suggesting that mitophagy might be reduced in this condition. The expression of LC3II was significantly increased (P<0.05), indicating the accumulation of autophagosomes. Up-regulated P62 (P<0.05) suggested that HG and HF resulted in impaired clearance of autophagosomes. Compared with those in HG-HF group,,LV-Parkin up-regulated the expression of Parkin and LC3II (P<0.05) and decreased the level of P62 significantly (P<0.05) following HG-HF treatment, indicating that Parkin over-expression enhanced mitophagy and autophagy flux. Parkin reduced the apoptosis (P<0.05) caused by high glucose and high plamitate in cardiomyocytes. CONCLUSION Parkin-mediated mitophagy plays a protective role in cardiomyocyte injury induced by high glucose and high palmitate.

参考文献/References

[1]Bugger H,Abel ED.Molecular mechanisms of diabetic cardiomyopathy[J].Diabetologia,2014,57(4):660-671.
[2]Mellor KM,Reichelt ME,Delbridge LM.Autophagy anomalies in the diabetic myocardium[J].Autophagy,2011,7(10):1263-1267.
[3]Gonzalez CD,Lee M S,Marchetti P,et al.The emerging role of autophagy in the pathophysiology of diabetes mellitus[J].Autophagy,2011,7(1):2-11.
[4]Martinet W,Knaapen MW,Kockx MM,et al.Autophagy in cardiovascular disease[J].Trends Mol Med,2007,13(11):482-491.
[5]Eiyama A,Okamoto K.PINK1/Parkin-mediated mitophagy in mammalian cells[J].Curr Opin Cell Biol,2015,33(2015 Apr):95-101.
[6]Boudina S,Abel ED.Diabetic cardiomyopathy revisited[J].Circulation,2007,115(25):3213-3223.
[7]Boudina S,Sena S,O’Neill BT,et al.Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity[J].Circulation,2005,112(17):2686-2695.
[8]Shen X,Zheng S,Metreveli NS,et al.Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy[J].Diabetes,2006,55(3):798-805.
[9]Kitada T,Asakawa S,Hattori N,et al.Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism[J].Nature,1998,392(6676):605-608.
[10]Narendra DP,Jin SM,Tanaka A,et al.PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J].PLoS Biol,2010,8(1):e1000298.
[11]Narendra D,Tanaka A,Suen DF,et al.Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J].J Cell Biol,2008,183(5):795-803.
[12]Suen DF,Narendra DP,Tanaka A,et al.Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells[J].Proc Natl Acad Sci U S A,2010,107(26):11835-11840.
[13]Narendra DP,Youle RJ.Targeting mitochondrial dysfunction:role for PINK1 and Parkin in mitochondrial quality control[J].Antioxid Redox Signal,2011,14(10):1929-1938.
[14]Van Humbeeck C,Cornelissen T,Hofkens H,et al.Parkin interacts with Ambra1 to induce mitophagy[J].J Neurosci,2011,31(28):10249-10261.
[15]Michiorri S,Gelmetti V,Giarda E,et al.The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy[J].Cell Death Differ,2010,17(6):962-974.
[16]Youle RJ,Narendra DP.Mechanisms of mitophagy[J].Nat Rev Mol Cell Biol,2011,12(1):9-14.

备注/Memo

备注/Memo:
收稿日期:2016-09-03.基金项目:国家自然科学基金项目资助(81370195) 通讯作者:张英梅,副教授,主要从事代谢异常心肌损伤的分子机制研究 Email:zhangym197951@126.com 作者简介:高蓓蕾,硕士生 Email:975254951@qq.com
更新日期/Last Update: 1900-01-01