我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

高糖对心肌细胞损害调节新机制:烟酰胺核糖通过Sirt3- p53/PGC-1α改善线粒体自噬及线粒体合成

《心脏杂志》[ISSN:1009-7236/CN:61-1268/R]

期数:
2018年第2期
页码:
130-135
栏目:
基础研究
出版日期:
2018-02-15

文章信息/Info

Title:
Nicotinamide riboside alleviates high glucose injury in adult mouse cardiomyocytes via the Sirt3-PGC-1a/p53 pathway through mitochondrial synthesis and mitochondrial autophagy
作者:
吴 萌吕 平杨亚丽李 巍尹志勇李 妍
(第四军医大学西京医院心血管内科,陕西 西安 710032)
Author(s):
WU Meng L? Ping YANG Ya-li LI Wei YIN Zhi-yong LI Yan
(Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China)
关键词:
成年小鼠心肌细胞烟酰胺核糖线粒体自噬Sirt3高糖 nutlin-3p53PGC-1α线粒体合成
Keywords:
adult murine cardiomyocytes nicotinamide riboside mitochondrial biogenesis high glucose injury PGC-1α mitochondrial autophagy nutlin-3 p53
分类号:
R977.2
DOI:
-
文献标识码:
A
摘要:
目的 明确烟酰胺核糖(nicotinamide riboside,NR)对成年小鼠心肌细胞在高糖条件下线粒体自噬及线粒体合成的影响及潜在机制。方法 分离成年小鼠心肌细胞后,将细胞分为:①对照组;②高糖组;③高糖+NR组;④高糖+NR+Sirt3siRNA;⑤高糖+NR+过氧化物酶体增生物活化受体γ共激活剂(Peroxisome proliferator-activated receptor γ co-activator,PGC)-1α siRNA组;⑥高糖+NR+nutlin-3组。采用TUNEL法,流式细胞术检测凋亡指数(AI),JC-1染色检测线粒体膜电位,Western blot法检测自噬相关蛋白Atg5、LC3,p62等蛋白表达水平,线粒体自噬相关蛋白Parkin,线粒体合成相关蛋白PGC-1α,Tfam蛋白表达水平,Sirt3。结果 与对照组相比,高糖干预后细胞AI增加(P<0.01),线粒体膜电位降低(P<0.01),PGC-1α、Tfam、Sirt3、Atg5、LC3和Parkin表达降低(P<0.01)、p62表达升高(P<0.01)。加入NR后,细胞凋亡减少(P<0.01),线粒体膜电位增高(P<0.01),PGC-1α、Tfam、Sirt3、Atg5、LC3和Parkin表达增高(P<0.01)、p62表达降低(P<0.01),然而,加入Sirt3siRNA,NR的作用减弱(P<0.01);加入PGC-1αsiRNA,NR作用减弱(P<0.01),加入nutlin-3后,NR作用减弱(P<0.01)。结论 NR通过加入p53激动剂nutlin-3,改善线粒体自噬,NR通过提高PGC-1α表达水平改善线粒体合成,最终减轻高糖对成年小鼠心肌细胞的损伤。
Abstract:
AIM To investigate the role of nicitinamide riboside (NR) in mitochondrial autophagy and mitochondrial biogenesis in adult mouse cardiomyocytes subjected to high glucose injury. METHODS Adult murine cardiomyocytes were randomly divided into six groups with or without 50 μmol/L nicotinamide riboside for 48 hours. Cell apoptosis was detected by TUNEL and flow cytometry and mitochondrial membrane potential was assessed by JC-1. The protein expressions of peroxisome proliferator-activated receptor γ co-activator (PGC)-1α, Tfam, LC3, Atg5, p62, p53 and Parkin were analyzed by Western blot. RESULTS Compared with those in the control group, high glucose significantly increased the cell apoptosis index (P<0.01) and reduced the mitochondrial membrane potential (P<0.01), as well as the expressions of PGC-1α, Tfam, LC3, Atg5, p53 and Parkin (P<0.01). However, the expression of P62 significantly increased (P<0.01). Additionally, NR decreased the cell apoptosis index (P<0.01) and increased the mitochondrial membrane potential (P<0.01). The mitochondrial membrane potential was reversed after knockdown of PGC-1α by siRNA, knockdown of Sirt3 by siRNA, or adding nutlin-3, a p53 agonist. NR also increased the expression of PGC-1α (P<0.01), which was reversed after knockdown of PGC-1α by siRNA. NR increased the expressions of LC3, Atg5, p53 and Parkin (P<0.01). These proteins were reversed after knockdown of Sirt3 by siRNA or adding nutlin-3, while the expression of p62 decreased (P<0.01). CONCLUSION Nicotinamide riboside, as a potential treatment, could improve mitochondrial biogenesis via up-regulating the expression of PGC-1α and improve mitochondrial autophagy via up-regulating the expression of p53, thus potentially reducing high glucose injury in adult murine cardiomyocytes.

参考文献/References

[1]Reddy VS,Reddy GB.Role of crystallins in diabetic complications[J].Biochim Biophys Acta,2016,1860(1 Pt B):269-277.

[2]Rubler S,Dlugash J,Yuceoglu YZ,et al.New type of cardiomyopathy associated with diabetic glomerulosclerosis[J].Am J Cardiol,1972,30(6):595-602.

[3]Falcao-Pires I,Leite-Moreira AF.Diabetic cardiomyopathy:understanding the molecular and cellular basis to progress in diagnosis and treatment[J].Heart Fail Rev,2012,17(3):325-344.

[4]Blachnio-Zabielska A,Zabielski P,Baranowski M,et al.Effects of streptozotocin-induced diabetes and elevation of plasma FFA on ceramide metabolism in rat skeletal muscle[J].Horm Metab Res,2010,42(1):1-7.

[5]Levine B,Klionsky DJ.Development by self-digestion: molecular mechanisms and biological functions of autophagy[J].Dev Cell,2004,6(4):463-477.

[6]Mellor KM,Reichelt ME,Delbridge LM.Autophagy anomalies in the diabetic myocardium[J].Autophagy,2011,7(10):1263-1267.

[7]Tolkovsky AM.Mitophagy[J].Biochim Biophys Acta,2009,1793(9):1508-1515.

[8]Xie Z,Lau K,Eby B,et al.Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice[J].Diabetes,2011,60(6):1770-1778.

[9]Jornayvaz FR,Shulman GI.Regulation of mitochondrial biogenesis[J].Essays Biochem,2010,47:69-84.

[10]Bieganowski P,Brenner C.Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans[J].Cell,2004,117(4):495-502.

[11]Pillai VB,Sundaresan NR,Jeevanandam V,et al.Mitochondrial SIRT3 and heart disease[J].Cardiovasc Res,2010,88(2):250-256.

[12]Brown K,Xie S,Qiu X,et al.SIRT3 reverses aging-associated degeneration[J].Cell Rep,2013,3(2):319-327.

[13]Li S,Banck M,Mujtaba S,et al.p53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase[J].PLoS One,2010,5(5):e10486.

[14]Ren J,Pulakat L,Whaley-Connell A,et al.Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease[J].J Mol Med (Berl),2010,88(10):993-1001.

[15]Gottlieb RA,Gustafsson AB.Mitochondrial turnover in the heart[J].Biochim Biophys Acta,2011,1813(7):1295-1301.

[16]Martinet W,Knaapen MW,Kockx MM,et al.Autophagy in cardiovascular disease[J].Trends Mol Med,2007,13(11):482-491.

[17]屈 岭,梁晓春.自噬对糖尿病慢性并发症的影响[J].基础医学与临床,2013,33(5):631-634.

[18]Bogan KL,Brenner C.Nicotinic acid,nicotinamide, and nicotinamide riboside:a molecular evaluation of NAD+ precursor vitamins in human nutrition[J].Annu Rev Nutr,2008,28:115-130.

[19]Chi Y,Sauve AA.Nicotinamide riboside,a trace nutrient in foods,is a vitamin B3 with effects on energy metabolism and neuroprotection[J].Curr Opin Clin Nutr Metab Care,2013,16(6):657-661.

[20]Gong B,Pan Y,Vempati P,et al.Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-gamma coactivator 1alpha regulated beta-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models[J].Neurobiol Aging,2013,34(6):1581-1588.

[21]Khan NA,Auranen M,Paetau I,et al.Effective treatment of mitochondrial myopathy by nicotinamide riboside,a vitamin B3[J].EMBO Mol Med,2014,6(6):721-731.

[22]Canto C,Houtkooper RH,Pirinen E,et al.The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity[J].Cell Metab,2012,15(6):838-847.

[23]Brown KD,Maqsood S,Huang JY,et al.Activation of SIRT3 by the NAD(+) precursor nicotinamide riboside protects from noise-induced hearing loss[J].Cell Metab,2014,20(6):1059-1068.

[24]Tseng AH,Shieh SS,Wang DL.SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage[J].Free Radic Biol Med,2013,63:222-234.

[25]Palacios OM,Carmona JJ,Michan S,et al.Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle[J].Aging(Albany NY),2009,1(9):771-783.

[26]Hoshino A,Mita Y,Okawa Y,et al.Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart[J].Nat Commun,2013,4:2308.

备注/Memo

备注/Memo:
收稿日期:2017-03-07.基金项目:国家自然科学基金项目资助(81570252;81500195) 通讯作者:李妍,副教授,主要从事冠心病基础及临床研究Email:liyanfmmu@hotmail.com 共同通讯作者:尹志勇,讲师,博士,主要从事缺血性心脏病损伤与保护研究Email:zhiyong_yin@163.com 作者简介:吴萌,硕士生Email:1104302815@qq.com
更新日期/Last Update: 1900-01-01