可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:
[1]Li C,Jackson RM.Reactive species mechanisms of cellular hypoxia-reoxygenation injury[J].Am J Physiol Cell Physiol,2002,282(2):C227-C241.
[2]Dhalla NS,Temsah RM,Netticadan T.Role of oxidative stress in cardiovascular diseases[J].J Hypertens,2000,18(6):655-673.
[3]Lonn E,Bosch J,Yusuf S,et al.Effects of long-term vitamin E supplementation on cardiovascular events and cancer:a randomized controlled trial[J].JAMA,2005,293(11):1338-47.
[4]Yan Y,Liu J,Wei C,et al.Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes[J].Cardiovasc Res,2008,77(2):432-441.
[5]Zhao Z,Wen H,Fefelova N,et al.Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes:predominant by Ca waves or Ca currents?[J].Am J Physiol Heart Circ Physiol,2012,302(8):H1636-H1644.
[6]Rajasekaran NS,Connell P,Christians ES,et al.Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice[J].Cell,2007,130(3):427-439.
[7]Owusu-Ansah E,Banerjee U.Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation[J].Nature,2009,461(7263):537-541.
[8]Maryanovich M,Gross A.A ROS rheostat for cell fate regulation[J].Trends Cell Biol,2012,23(3):129-134.
[9]Adler V,Yin Z,Tew KD,et al.Role of redox potential and reactive oxygen species in stress signaling[J].Oncogene,1999,18(45):6104-6111.
[10]Yoo SK,Starnes TW,Deng Q,et al.Lyn is a redox sensor that mediates leukocyte wound attraction in vivo[J].Nature,2011,480(7375):109-112.
[11]Valko M,Leibfritz D,Moncol J,et al.Free radicals and antioxidants in normal physiological functions and human disease[J].Int J Biochem Cell Biol,2007,39(1):44-84.
[12]Bashan N,Kovsan J,Kachko I,et al.Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species[J].Physiol Rev,2009,89(1):27-71.
[13]Turrens JF.Mitochondrial formation of reactive oxygen species[J].J Physiol,2003,552(Pt2):335-344.
[14]Dr?ge W.Free radicals in the physiological control of cell function[J]. Physiol Rev,2002,82(1):47-95.
[15]Nohl H,Gille L,Staniek K.The mystery of reactive oxygen species derived from cell respiration[J].Acta Biochim Pol,2004,51(1):223-229.
[16]Cadenas E,Boveris A,Ragan CI,et al.Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria[J].Arch Biochem Biophys,1977,180(2):248-257.
[17]Takeshige K,Minakami S.NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation[J].Biochem J,1979,180(1):129-135.
[18]Kang D,Narabayashi H,Sata T,et al.Kinetics of superoxide formation by respiratory chain NADH-dehydrogenase of bovine heart mitochondria[J].J Biochem,1983,94(4):1301-1306.
[19]Genova ML,Pich MM,Biondi A,et al.Mitochondrial production of oxygen radical species and the role of Coenzyme Q as an antioxidant[J].Exp Biol Med(Maywood),2003,228(5):506-513.
[20]Korshunov SS,Skulachev VP,Starkov AA.High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria[J].FEBS Lett,1997,416(1):15-18.
[21]Krishnamoorthy G,Hinkle PC.Studies on the electron transfer pathway,topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase[J].J Biol Chem,1988,263(33):17566-17575.
[22]Kushnareva Y,Murphy AN,Andreyev A.Complex I-mediated reactive oxygen species generation:modulation by cytochrome c and NAD(P)+ oxidation-reduction state[J].Biochem J,2002,368(Pt 2):545-553.
[23]Starkov AA,Fiskum G.Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state[J].J Neurochem,2003,86(5):1101-1107.
[24]Rich PR,Bonner WD.The sites of superoxide anion generation in higher plant mitochondria[J].Arch Biochem Biophys,1978,188(1):206-213.
[25]Ksenzenko M,Konstantinov AA,Khomutov GB,et al.Relationships between the effects of redox potential, alpha-thenoyltrifluoroacetone and malonate on O(2) and H2O2 generation by submitochondrial particles in the presence of succinate and antimycin[J].FEBS Lett,1984,175(1):105-108.
[26]Whatley SA,Curti D,Das Gupta F,et al.Superoxide,neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients[J].Mol Psychiatry,1998,3(3):227-237.
[27]Hauptmann N,Grimsby J,Shih JC,et al.The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA[J].Arch Biochem Biophys,1996,335(2):295-304.
[28]Loffler M,Becker C,Wegerle E,et al.Catalytic enzyme histochemistry and biochemical analysis of dihydroorotate dehydrogenase/oxidase and succinate dehydrogenase in mammalian tissues, cells and mitochondria[J].Histochem Cell Biol,1996,105(2):119-128.
[29]Miwa S,St-Pierre J,Partridge L,et al.Superoxide and hydrogen peroxide production by Drosophila mitochondria[J].Free Radic Biol Med,2003,35(8):938-48.
[30]Mclennan HR,Degli Esposti M.The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species[J].J Bioenerg Biomembr,2000,32(2):153-162.
[31]Vasquez-Vivar J,Kalyanaraman B,Kennedy MC.Mitochondrial aconitase is a source of hydroxyl radical.An electron spin resonance investigation[J].J Biol Chem,2000,275(19):14064-14069.
[32]Tretter L,Adam-Vizi V.Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase[J].J Neurosci,2004,24(36):7771-7778.
[33]Sugamura K,Keaney JF Jr.Reactive oxygen species in cardiovascular disease[J].Free Radic Biol Med,2011,51(5):978-992.