我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

微钙化与易损斑块相关性的研究进展

《心脏杂志》[ISSN:1009-7236/CN:61-1268/R]

期数:
2014年第5期
页码:
595-598
栏目:
综述
出版日期:
2014-05-25

文章信息/Info

Title:
Relationship between microcalcifications and vulnerable plaques: research progress
作者:
崔源源段文慧史大卓
(中国中医科学院西苑医院心血管病中心,北京 100091)
Author(s):
CUI Yuan-yuan DUAN Wen-hui SHI Da-zhuo
(Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medicine Science, Beijing 100091, China)
关键词:
微钙化易损斑块组织应力
Keywords:
microcalcification plaque vulnerability stress tissue
分类号:
R543.5
DOI:
-
文献标识码:
A
摘要:
不良心血管事件(ACE)的发生,大部分是在动脉管腔轻至中度狭窄的基础上,由易损斑块破裂或侵蚀以及血栓形成所致。现代医学对冠状动脉粥样化性疾病的研究,已从以往仅关注管腔狭窄的程度向关注斑块的易损性转变。因此,探索易损斑块破裂的机制,早期识别易损斑块,预防ACE的发生成为心血管疾病研究领域的热点之一。近年来,大量研究发现动脉粥样硬化(AS)斑块内微钙化(microcalcifications,μCalcs)的出现与斑块的易损性关系密切,由此推测μCalcs可能是引起斑块破裂的一个重要因素。本文对AS斑块内μCalcs与易损斑块的相关性作一综述。
Abstract:
The occurrence of adverse cardiovascular events (ACE) is often due to vulnerable plaque rupture or thrombus formation on the basis of mild to moderate arteriostenosis. The research field for coronary artery disease has converted from the degree of luminal stenosis to the vulnerability of plaques. Therefore, exploring the mechanism of vulnerable plaque rupture, early identifying vulnerable plaques and preventing ACE have become the “hot spots” in the research field of cardiovascular diseases. In recent years, numerous studies have found that microcalcifications (μCalcs) are associated with plaque vulnerability, indicating that μCalcs may play an important role in plaque rupture. In this article we reviewed the relationship between microcalcifications and plaque vulnerability.

参考文献/References

[1]Maldonado N,Kelly-Arnold A,Vengrenyuk Y,et al.A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability:potential implications for plaque rupture[J].Am J Physiol Heart Circ Physiol,2012, 303(5):H619-H628.
[2]Hjortnaes J,Butcher J,Figueiredo JL,et al.Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling:a role for inflammation[J].Eur Heart J,2010,31(18):1975-1984.
[3]Aikawa E,Nahrendorf M,Figueiredo JL,et al.Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo[J].Circulation,2007,116(24):2841-2850.
[4]Roijers RB,Debernardi N,Cleutjens JP,et al.Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries[J].Am J Pathol,2011,178(6):2878-2887.
[5]Shanahan CM,Crouthamel MH,Kapustin A,et al.Review Arterial calcification in chronic kidney disease:key roles for calcium and phosphate[J].Circ Res,2011,109(6):697-711.
[6]Menini S,Iacobini C,Ricci C,et al.The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis[J].Cardiovasc Res,2013,100(3):472-480.
[7]Cardoso L,Weinbaum S.Changing views of the biomechanics of vulnerable Plaque Rupture: A Review[J].Ann Biomed Eng,2014,42(2):415-431.
[8]Cheng GC, Loree HM,Kamm RD,et al.Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation[J].Circulation,1993,87(4):1179-1187.
[9]Akyildiz AC, Speelman L,van Brummelen H,et al.Effects of intima stiffness and plaque morphology on peak cap stress[J].J Biomed Eng Online,2011,10:25.
[10]Vengrenyuk Y,Cardoso L,Weinbaum S.Micro-CT based analysis of a new paradigm for vulnerable plaque rupture:cellular microcalcifications in fibrous caps[J].Mol Cell Biomech,2008,5(1):37-47.
[11]Maldonado N,Kelly-Arnold A,Vengrenyuk Y,et al.A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability:potential implications for plaque rupture[J].Am J Physiol Heart Circ Physiol,2012,303(5):H619-H628.
[12]Cilla M, Monterde D, Pe?a E,et al.Does microcalcification increase the risk of rupture?[J].Proc Inst Mech EngH,2013,227(5):588-599.
[13]Kelly-Arnold A,Maldonado N,Laudier D,et al.Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries[J].Proc Natl Acad Sci U S A,2013,10(26):10741-1076.
[14]Li ZY,Howarth S,Tang T,et al.Does calcium deposition play a role in the stability of atheroma? Location may be the key[J].Cerebrovasc Dis,2007,24(5):452-459.
[15]Wenk JF,Papadopoulos P,Zohdi TI.Numerical modeling of stress in stenotic arteries with microcalcificatons:a micromechanical approximation[J].J Biomech Eng,2010,132(9):091011.
[16]Bluestein D,Alemu Y,Avrahami I,et al.Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling[J].J Biomech,2008,41(5):1111-1118.
[17]Maldonado N,Kelly-Arnold A,Cardoso L,et al.The explosive growth of small voids in vulnerable cap rupture;cavitation and interfacial debonding[J].J Biomech,2013,46(2):396-401.
[18]Bobryshev YV,Killingsworth MC,Lord RS,et al.Matrix vesicles in the fibrous cap of atherosclerotic plaque:possible contribution to plaque rupture[J].J Cell,2008,12(5B):2073-2082.
[19]New SE,Goettsch C,Aikawa M,et al.Macrophage-derived matrix vesicles:an alternative novel mechanism for microcalcification in atherosclerotic plaques[J].Circ Res,2013,113(1):72-77.

备注/Memo

备注/Memo:
收稿日期:2013-12-01.
基金项目:国家科技重大专项基金项目资助(2009ZX09502-031);中医药行业科技项目资助(201007001)
通讯作者:段文慧,副主任医师,主要从事冠心病研究 Email:duanwh168@126.com.
作者简介:崔源源,硕士生 Email:cuiyuanyuan59@yeah.net
更新日期/Last Update: 2014-06-05