我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

催产素联合乳鼠心肌细胞条件培养液诱导胚胎干细胞分化的作用

《心脏杂志》[ISSN:1009-7236/CN:61-1268/R]

期数:
2010年第4期
页码:
500-505,513
栏目:
基础研究
出版日期:
2010-06-10

文章信息/Info

Title:
Oxytocin combined with neonatal rat cardiomyocytes-conditioned growth medium enhances differentiation of embryonic stem cells into cardiomyocytes
作者:
滕继伟1郑强荪1欧东波1郭菁菁1 陈瑞2王子宽1
第四军医大学唐都医院:1.心脏内科,2.整形烧伤科,陕西 西安 710038
Author(s):
TENG Ji-wei1 ZHENG Qiang-sun1 OU Dong-bo1 GUO Jing-jing1 CHEN Rui2 Wang Zi-kuan1
1.Department of Cardiology, 2.Department of Burn and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
关键词:
胚胎干细胞催产素条件培养液分化心肌细胞
Keywords:
embryonic stem cells oxytocin conditioned medium differentiation cardiomyocytes
分类号:
R984
DOI:
-
文献标识码:
A
摘要:
目的: 探讨安全高效体外诱导胚胎干细胞(ESCs)向心肌细胞(CMs)分化的途径。方法: ESCs经三步法形成拟胚体(embryoid bodies,EBs)后,按培养基的不同分为4组:乳鼠CMs条件培养液诱导组;催产素(oxytocin,OT)诱导组;混合添加诱导组(乳鼠CMs条件培养液加催产素);对照组(无任何添加)。利用免疫组化染色法检测心肌特异蛋白、RT-PCR检测细胞特殊因子的表达、变时性反应观察细胞对心脏药物的反应及观察细胞的超微结构,对比各组分化后细胞的结构及功能。结果: 对照组未观察到细胞跳动。混合添加诱导组、OT诱导组和乳鼠CMs条件培养液诱导组早期分别有(90.30±3.43)%、(21.53±2.69)%和(22.37±6.31)% EBs搏动;中期分别有(92.34±2.65)%、(22.36±2.52)%和(24.15±5.12)% EBs搏动;晚期分别有(83.65±6.27)%、(11.35±2.14)%和(10±4.25)% EBs搏动。免疫组化染色法检测、RT-PCR、变时性反应及电镜观察等的结果提示,混合添加诱导组诱导ESCs分化的效率远高于其余各组。结论: OT、乳鼠CMs条件培养液、OT加乳鼠CMs的条件培养液均具有诱导 ESCs分化为CMs的作用,且后者的诱导更具有高效性。
Abstract:
AIM: To explore a safe and available approach to induce embryonic stem cells (ESCs) to differentiate into cardiomyocytes (CMs) in vitro. METHODS: Embryoid bodies (EBs) formed from ESCs by three steps were then cultured as four groups: 1) combination group (combined with conditioned medium and OT), 2) oxytocin (OT) group, 3) conditioned medium group (conditioned medium by neonate rat cardiomyocytes), and 4) control group (without addition). Structural and functional properties of these ESC-derived CMs (ESCMs) were then evaluated by immunohistochemical staining, RT-PCR, chronotropic response, and observation under transmission electron microscope. RESULTS: There were no spontaneously beating EBs in the control group. At the early differentiation stage there were, respectively, (90.30±3.43)%, (21.53±2.69)% and (22.37±6.31)% of ESCs-derived EBs in combination group, conditioned medium group and OT group exhibiting spontaneous contractions, whereas the intermediate stage was (92.34±2.65)%, (22.36±2.52)% and (24.15±5.12)%, and the late differentiation stage was (83.65±6.27)%, (11.35±2.14)% and (10±4.25)%. Results from immunohistochemical staining, RT-PCR, chronotropic response and observation under transmission electron microscope all suggested that the differentiation efficiency in the experimental group was much higher than in other groups (P<0.01). CONCLUSION: OT is used alone or with conditioned medium by neonate rat cardiomyocytes, or OT combined with conditioned medium for cultivation of neonate rat cardiomyocytes can efficiently induce ESCs to differentiate into functional CMs. However, the differentiation efficiency from OT combined with conditioned medium for cultivation of neonate rat cadiocytes is much more efficient.

参考文献/References

[1]Itskovitz-Eldor J, Schuldiner M, Karsenti D, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers[J]. Mol Med, 2000, 6(2):88-95.

[2]Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes[J]. J Clin Invest, 2001, 108(3):363-407.

[3]Ou DB, Lang HJ, Zheng QS, et al. Using embryonic stem cells to form a biological pacemaker via tissue engineering technology[J]. Bioessays, 2009, 31(2):246-252.

[4]Norstrom A, Akesson K, Hardarson T, et al. Molecular and pharmacological properties of human embryonic stem cell-derived cardiomyocytes[J]. Exp Biol Med (Maywood), 2006, 231(11):1753-1762.

[5]Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation[J]. J Thorac Cardiovasc Surg, 2002, 123(6):1132-1140.

[6]Bremer S, DoorenM, Paparrella M, et al. Effects of em-bryotoxic chemicals on the in vitro differentiation of genetically engineered embryonic stem cells into cardiac cells[J]. Toxicology in Vitro, 1999, 13(4-5):645-650.

[7]Robertson EJ. Teratocarcinomas and Embryonic Stem Cells: A Practical Approach[M]. USA: Oxford University Press, 1987:19-49.

[8] Metzger JM, Lin WI, Johnston RA , et al. Myosin heavy chain expression in contracting myocytes isolated during embryonic stem cell cardiogenesis[J]. Circ Res, 1995, 76(5):710-719.

[9]Scholz G, Pohl I, Genschow E, et al. Embryotoxicity screening using embryonic stem cells in vitro: correlation to in vivo teratogenicity[J]. Cells Tissues Organs, 1999, 165(3-4):203-211.

[10]Fathi F, Murasawa S, Hasegawa S, et al. Cardiac differentiation of P19CL6 cells by oxytocin[J]. Int J Cardiol, 2009, 134(1):75-81.

[11]Maltsev VA, Wobus AM, Rohwedel J, et al. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally cardiac specific genes and ionic currents[J]. Circ Res, 1994, 75(2):233-244.

[12]Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 2929(5819):154-156.

[13]Paquin J, Danalache BA, Jankowski M, et al. Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes[J]. Proc Natl Acad Sci U S A, 2002, 99(14):9550-9555.

[14]Katsuhisa M, Toshio N, Nobuhiro N, et al. Adult cardiac sca-1-positive cells differentiate into beating cardiomyocytes[J]. J Biol Chem, 2004, 279(12):11384-11391.

[15]Mygind T, Stiehler M, Baatrup A, et al. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds[J]. Biomaterials, 2007, 28(6):1036-1047.

[16]Liao R, Pfister O, Jain M, et al. The bone marrow cardiac axis of myocardialregeneration[J]. ProgCardiovasc Dis,2007,50(1):18-30.

[17]Camelliti P, McCulloch AD, Kohl P. Microstructured cocultures of cardiac myocytes and fibroblasts: a two-dimensional in vitro model of cardiac tissue[J]. Microsc Microanal, 2005, 11(3):249-259.

[18]Schuleri KH, Boyle AJ, Hare JM. Handb Exp Pharmacol :Mesenchymal stem cells for cardiac regenerative therapy[M]. USA: Oxford University Press, 2007:195-218.

[19]Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells[J]. Nat Genet, 2000, 24(4):372-376.

[20]Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct-4[J]. Cell, 1998, 95(3):379-391.

[21]Kim HS, Cho JW, Hidaka K, Morisaki T, et al. Activation of MEK-ERK by heregulin-beta1 promotes the development of cardiomyocytes derived from ES cells[J]. Biochem Biophys Res Commun, 2007, 361(3):732-738.

[22]Snir M, Kehat I, Gepstein A, et al. Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2003, 285(6):H2355-H2363.

备注/Memo

备注/Memo:
收稿日期:2009-10-30.通讯作者:郑强荪,主任医师,主要从事心脏组织工程及复杂心律失常射频消融治疗研究Email:qiangsunzheng@gmail.com 作者简介:滕继伟,主治医师,硕士Email:tengjiwei@yahoo.com.cn
更新日期/Last Update: 2010-05-20