可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:
[1]李泱,王士雯. 离子通道学的未来发展及可能遇到的问题[J]. 中国心脏起搏与心电生理杂志, 2006, 20(6): 538-546.
[2]史路平,王军. ATP敏感性钾通道的容积调控特性研究发展[J]. 心脏杂志, 2009, 21(2):267-270.
[3]Radicke S, Cotella D, Graf EM, et al. Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative β-subunit of human cardiac transient outward current encoded by Kv4.3[J]. J Physiol, 2005, 565(Pt3): 751-756.
[4]Wang YG, Cheng J, Tandan S, et al. Transient-outward K+ channel inhibition facilitates L-type Ca2+ current in heart[J]. J Cardiovasc Electrophysiol, 2006, 17(3): 298-304.
[5]Jost N, Papp JG,Varró A. Slow delayed rectifier potassium current (IKs) and the repolarization reserve[J]. Ann Noninvasive Electrocardiol, 2007, 12(1):64-78.
[6]Hancox JC, McPate MJ, Harchi AE, et al. The hERG potassium channel and hERG screening for drug-induced torsades de pointes[J]. Pharmacol Ther, 2008, 119(2):118-132.
[7]Larsen AP, Olesen SP, Grunnet M, et al. Characterization of hERG1a and hERG1b potassium channels-a possible role for hERG1b in the IKr current[J]. Pflügers Arch-Eur J Physiol, 2008, 456(6):1137-1148.
[8]Manderfield LJ, George AL Jr. KCNE4 can co-associate with the I(Ks) (KCNQ1-KCNE1) channel complex[J]. FEBS J, 2008, 275(6):1336-1349.
[9]Mustapha Z, Pang L, Nattel S. Characterization of the cardiac KCNE1 gene promoter[J]. Cardiovasc Res, 2007, 73(1):82-91.
[10]Zitron E, Günth M, Scherer D, et al. Kir2.x inward rectifier potassium channels are differentially regulated by adrenergic α1A receptors[J]. J Mol Cell Cardiol, 2008, 44(1):84-94.
[11]Ehrlich JR. Inward rectifier potassium currents as a target for atrial fibrillation therapy[J]. J Cardiovasc Pharmacol, 2008, 52(2):129-135.
[12]周逸,唐其柱. ATP敏感性钾通道在缺血预适应中的作用[J] . 心脏杂志, 2005, 17(1):83-86.
[13]Zünkler BJ. Human ether-a-go-go-related (HERG) gene and ATP-sensitive potassium channels as targets for adverse drug effects[J]. Pharmacol Ther, 2006, 112(1):12-37.
[14]Kane GC, Liu XK, Yamada S, et al. Cardiac KATP channels in health and disease[J]. J Mol Cell Cardiol, 2005, 38(6):937-943.
[15]Abriel H, Kass RS. Regulation of the voltage-gated cardiac sodium channel Nav1.5 by interacting proteins[J]. Trends Cardiovasc Med, 2005, 15(1):35-40.
[16]Mohler PJ. Ankyrins and human disease: What the electrophysiologist should know[J]. J Cardiovasc Electrophysiol, 2006, 17(10):1153-1159.
[17]Lowe JS, Palygin O, Bhasin N, et al. Voltage-gated Nav channel targeting in the heart requires an ankyrin-G-dependent cellular pathway[J]. J Cell Biol, 2008, 180(1):173-186.
[18]Fearon IM, Gautier M. From a distinct sodium channel prolonged action potentials in cardiac Purkinje cells: a distinct phenotype arising[J]. Exp Physiol, 2007, 92(1):1-2.
[19]Brette F, Leroy J, Le Guennec JY, et al. Ca2+ currents in cardiac myocytes: Old story, new insights[J]. Prog Biophys Mol Biol, 2006, 91(1-2):1-82.
[20]Findlay I, Suzuki S, Murakami S, et al. Physiological modulation of voltage-dependent inactivation in the cardiac muscle L-type calcium channel: A modelling study[J]. Prog Biophys Mol Biol, 2008, 96(1-3):482-498.
[21]Gregory M, Faber JS, Livshitz L, et al. Kinetic properties of the cardiac L-type Ca2+ channel and Itos role in myocyte electrophysiology: a theoretical investigation[J]. Biophys J, 2007, 92(5):1522-1543.
[22]Bkaily G, Sculptoreanu A, Wang SM, et al. Angiotensin II-induced increase of T-type Ca2+ current and decrease of L-type Ca2+ current in heart cells[J]. Peptides, 2005, 26(8):1410-1417.
[23]Li H, Zhang H, Hancox JC, et al. An outwardly rectifying anionic background current in atrial myocytes from the human heart[J]. Biochem Biophys Res Commun, 2007, 359(3):765-770.
[24]Demion M, Guinamard R, El Chemaly A, et al. An outwardly rectifying chloride channel in human atrial cardiomyocytes[J]. Cardiovasc Electrophysiol, 2006, 17(1):60-68.
[25]Verkerk AO, Wilders R, van Borren MM, et al. Pacemaker current (If) in the human sinoatrial node[J]. Eur Heart J, 2007, 28(20):2472-2478.
[26]Barbuti A, Baruscotti M, Difrancesco D. The pacemaker current: from basics to the clinics[J]. Cardiovasc Electrophysiol, 2007, 18(3):342-347.
[27]Cerbai E, Mugelli A. I(f) in non-pacemaker cells: Role and pharmacological implications[J]. Pharmacol Res, 2006, 53(5):416-423.
[28]Chemaly A, Christopne M, Patri S, et al. The heart rate-lowering agent ivabradine inhibits the pacemaker current If in human atrial myocytes[J]. Cardiovasc Electrophysiol, 2007, 18(11):1190-1196.
[29]Azene EM, Xue T, Li RA. Molecular basis of the effect of potassium on heterologously expressed pacemaker (HCN) channels[J]. J Physiol, 2006, 547(Pt2):349-356.
[30]Michels G, Brandt1 MC, Zagidullin N, et al. Direct evidence for calcium conductance of hyperpolarization-activated cyclic nucleotide-gated channels and human native If at physiological calcium concentrations[J]. Cardiovasc Res, 2008, 78(3):466-475.
[31]Watanabe Y, Koide Y, Kimura J. Topics on the Na+/Ca2+ Exchanger: Pharmacological characterization of Na+/Ca2+ exchanger inhibitors[J]. J Pharmacol Sci, 2006, 102(1):7-16.
[32]Bers DM, Despa S. Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts[J]. J Pharmacol Sci, 2006, 100(5):315-322.
[33]Diedrichs H, Frank K, Schneider CA, et al. Increased functional importance of the Na+-Ca2+ exchanger in contracting failing human myocardium but unchanged activity in isolated vesicles[J]. Int Heart J, 2007, 48(6):755-766.