我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

正常小鼠主动脉瓣膜的组织形态学研究

《心脏杂志》[ISSN:1009-7236/CN:61-1268/R]

期数:
2010年第5期
页码:
677-683
栏目:
基础研究
出版日期:
2010-06-22

文章信息/Info

Title:
Histological and morphometric analyses of mouse heart valve aorta structure
作者:
历志1魏旭峰1顾春虎1康晓军1王春梅2韩骅3易定华1
第四军医大学:1.西京医院心脏外科,2.电镜中心,3.医学遗传和发育生物学教研室,陕西 西安 710032
Author(s):
LI Zhi1 WEI Xu-feng1 GU Chun-hu1 KANG Xiao-jun1 WANG Chun-mei2 HAN Hua3 YI Ding-hua1
1.Department of Cardiac Surgery, Xijing Hospital, 2.Department of Electronic Microscope Center, 3.Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
关键词:
主动脉瓣膜组织形态分析上皮-间质转化小鼠
Keywords:
mouse valve valve histological morphometric analyses epidermal-mesenchymal transformation
分类号:
R542.52
DOI:
-
文献标识码:
A
摘要:
目的: 建立转基因小鼠主动脉瓣疾病模型的评估标准。方法: 采用3月龄C57成年小鼠20只,分离小鼠心脏称重后固定,经HE染色、免疫荧光、激光共聚焦和Massoon染色后光镜观察及电镜观察,分别对瓣膜的细胞数量、分布、胶原含量及瓣膜超微结构进行组织形态学分析。结果: 正常小鼠主动脉瓣的面积为(0.1978±0.003) mm2,周长为(9.18±0.06)×102 μm,平均细胞数为(9.75±0.04)×102个/mm2,其中内皮细胞数为(3.23±0.10)×102个/mm2,间质细胞数为(5.05±0.07)×102个/mm2,胶原含量为(23.77±8.38)%。此外,通过激光共聚焦显微镜观察还发现,成体内皮下层存在一些共表达CD31及α-SMA的细胞,表明成体瓣膜仍保留具有上皮-间质转化潜能的细胞。电镜观察发现,瓣膜的心室面内皮与主动脉面内皮在形态上存在有很大的差异:心室面内皮呈扁平形与血流方向一致,主动脉面内皮呈方形与血流方向垂直。间质中成纤维细胞处于静止状态,其细胞胞体较小,呈长梭形,粗面内质网和高尔基复合体均不发达。细胞外基质胶原的含量丰富,主要集中于流出道。结论: 本实验首次详细观测了小鼠主动脉瓣形态学特征,建立了正常小鼠主动脉瓣组织形态学研究的标准,为今后小鼠主动脉瓣疾病模型的研究提供重要的参考依据。
Abstract:
AIM: To provide standard morphometric data of normal mouse aorta valve structure for the evaluation of transgenic mouse models of aortic valve diseases. METHODS: Adult mouse (postnatal 3 months) hearts were harvested and histological and valve morphometric analyses of valve cell population, distribution and collagen content as well as valve microstructure were conducted by light microscope (HE stain, immunofluorescence, Laser scanning confocal microscope and Masson’s trichrome stain) and transmission electron microscope. RESULTS: The aortic valve area of normal mice was (0.1978±0.003) mm2 with a perimeter of (9.18±0.06)×102 μm, average cell number (9.75±0.04)×102/mm2, endothelial cell number (3.23±0.10)×102/mm2, intersititial cell number (5.05±0.07)×102/mm2, and collagen content (21.62±9.33)%. Confocal laser scanning displayed some co-expressed CD31 and α-SMA cells under endothelium, indicating the existence of epidermal-mesenchymal transformation potential cells in adult aortic valves. Electron microscopy showed some morphological differences between the ventricular face of the valve and the aortic face of the valve endothelium. The ventricular face of the valve endothelium was flat, whereas the aortic face of the valve endothelium was square. Interstitial fibroblasts were in a quiescent state in which the cell bodies were short and long spindle-shaped, and endoplasmic reticulum and Golgi complexes were undeveloped. Extracellular matrix was collagen-rich, which was mainly concentrated in the outflow tract. CONCLUSION: Histological and morphometric data are provided for normal mouse aortic valve structure and are useful as reference standards for future studies of mouse models of progressive aortic valve diseases.

参考文献/References

[1]Yutzey KE, Robbins J. Principles of genetic murine models for cardiac disease[J]. Circulation, 2007,115(6): 792-799.

[2]Phoon CK, Ji RP, Aristizabal O, et al. Embryonic heart failure in NFATc1-/- mice: novel mechanistic insights from in utero ultrasound biomicroscopy[J]. Circ Res, 2004, 95(1):92-99.

[3] Sierro F, Biben C, Martinez-Munoz L, et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7[J]. Proc Natl Acad Sci USA, 2007, 104(37):14759-14764.

[4]Strauch OF, Stypmann J, Reinheckel T, et al. Cardiac and ocular pathologies in a mouse model of mucopolysaccharidosis type VI[J]. Pediatr Res, 2003, 54(5):701-708.

[5]Tanaka K, Sata M, Fukuda D, et al. Age-associated aortic stenosis in apolipoprotein E-deficient mice[J]. J Am Coll Cardiol, 2005, 46(1):134-141.

[6]Weiss RM, Ohashi M, Miller JD, et al. Calcific aortic valve stenosis in old hypercholesterolemic mice[J]. Circulation, 2006, 114(19):2065-2069.

[7]Yoshioka M, Yuasa S, Matsumura K, et al. Chondromodulin-I maintains cardiac valvular function by preventing angiogenesis[J]. Nat Med, 2006, 12(10):1151-1159.

[8]Devereux RB, Brown WT, Kramer-Fox R, et al. Inheritance of mitral valve prolapse: effect of age and sex on gene expression[J]. Ann Intern Med, 1982, 97(6):826-832.

[9]Roberts WC, Ko JM. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation[J]. Circulation, 2005, 111(7): 920-925.

[10]Hinton RB, Yutzey KE, Benson DW. Congenital heart disease: genetic causes and developmental insights[J]. Prog Ped Card, 2005, 20(2):101-111.

[11]Collins KA, Korcarz CE, Lang RM. Use of echocardiography for the phenotypic assessment of genetically altered mice[J]. Physiol Genomics, 2003, 13(3):227-239.

[12]Drolet MC, Roussel E, Deshaies Y, et al. A high fat/high carbohydrate diet induces aortic valve disease in C57BL/6J mice[J].J Am Coll Cardiol, 2006, 47(4):850-855.

[13]Paranya G, Vineberg S, Dvorin E, et al. Aortic valve endothelial cells undergo transforming growth factor-β-mediated and non-transforming growth factor-β-mediated transdifferentiation in vitro[J]. J Am Pathol, 2001, 159(4):1335-1343.

[14]Paruchuri S, Yang JH, Aikawa E, et al. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-β2[J]. Circ Res, 2006, 99(8):861-869.

[15]Jian B, Xu J, Connolly J, et al. Serotonin mechanisms in heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells[J]. Am J Pathol, 2002, 161(6):2111-2121.

[16] Aikawa E, Whittaker P, Farber M, et al. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering[J].Circulation, 2006, 113(10):1344-1352.

备注/Memo

备注/Memo:
收稿日期:2009-09-28.基金项目:国家863计划课题项目资助(2006AA02A138) 通讯作者:易定华,主任医师,主要从事复杂先心病和冠状动脉外科研究Email:yidh@fmmu.edu.cn 作者简介:历志,硕士生Email:lizhi@fmmu.edu.cn
更新日期/Last Update: 2010-06-22