我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

氧化应激在糖尿病所致的心肌缺血/再灌注损伤中的作用

《心脏杂志》[ISSN:1009-7236/CN:61-1268/R]

期数:
2018年第2期
页码:
225-229
栏目:
综述
出版日期:
2018-02-15

文章信息/Info

Title:
Oxidative stress as a major culprit in myocardial ischemia/reperfusion injury in diabetes
作者:
毛 予12杨丽芳1
(1.西安市儿童医院麻醉科,陕西 西安 710003;2.解放军94672部队,江苏 南京211100)
Author(s):
MAO Yu12 YANG Li-fang1
(1.Deptartment of Anesthesiology, Xi’an Children's Hospital, Xi’an 710003, Shaanxi, China; 2.PLA Unit 94672, Nanjing 211100, Jiangsu, China)
关键词:
糖尿病心肌缺血再灌注氧化应激心肌保护
Keywords:
diabetes myocardial ischemia reperfusion oxidative stress cardioprotection
分类号:
R587.1
DOI:
-
文献标识码:
A
摘要:
近年来,糖尿病(DM)患病率与日俱增,且并发症多。当DM患者伴发缺血性心肌病(IHD)时极易诱发心肌缺血/再灌注损伤(MI/RI),而氧化应激在MI/RI中发挥着关键作用。由于胰岛素抵抗诱发的脂质代谢紊乱、内皮细胞功能障碍以及脂联素抵抗会导致心肌细胞凋亡增多、细胞抗氧化防御系统减弱以及促存活细胞信号通路受损,致使糖尿病性心脏病患者更易发生MI/RI,最终导致心力衰竭。氧化应激的3个主要机制分别是:活性氧簇(ROS)和活性氮簇(RNS)以及解偶联的一氧化氮合酶(NOS)通过氧化/硝化反应干扰线粒体质量调控系统,在这篇综述中,我们将主要对氧化应激在DM发生的MI/RI中可能存在的作用机制进行探讨。
Abstract:
Diabetes Mellitus has a high morbidity and correlates with many other diseases. When associated with diabetes mellitus, ischemic heart disease (IHD) tends to induce myocardial ischemia/reperfusion injury (MI/RI). Oxidative stress plays a key role in affecting both metabolic disorder and MI/RI. Altered lipid metabolism, endothelial dysfunction, and APN resistance in the presence of increased cardiomyocyte apoptosis, decreased antioxidant defense, and impaired prosurvival cell signals may render the diabetic heart more vulnerable to MI/RI. Producing reactive oxygen species (ROS) and reactive nitrogen species (RNS), uncoupling nitric oxide synthase (NOS) and disturbing the mitochondrial quality control may be three major mechanisms of oxidative stress. This review focuses on the role of oxidative stress in the pathophysiology of MI/RI in diabetes mellitus and discusses potential mechanisms in an effort to provide some evidence for oxidative stress-targeted therapies for IHD.

参考文献/References

[1]Mozaffarian D,Benjamin EJ,Go AS,et al.Heart Disease and Stroke Statistics-2016 Update:A Report From the American Heart Association[J].Circulation,2016,133(4):e38-e360.

[2]Nguyen QM,Srinivasan SR,Xu JH,et al.Changes in risk variables of metabolic syndrome since childhood in pre-diabetic and type 2 diabetic subjects: the Bogalusa Heart Study[J].Diabetes care,2008,31(10):2044-2049.

[3]Aronson D,Edelman ER.Coronary Artery Disease and Diabetes Mellitus[J].Heart Fail Clin,2016,12(1):117-133.

[4]Suzuki H,Kayama Y,Sakamoto M,et al.Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy[J].Diabetes,2015,64(2):618-630.

[5]Anderson EJ,Kypson AP,Rodriguez E,et al.Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart[J].J Am Coll Cardiol,2009,54(20):1891-1898.

[6]Raedschelders K,Ansley DM,Chen DD.The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion Nov 10[J].Pharmacol Ther,2012,133(2):230-255.

[7]Wu Y,Xia ZY,Dou J,et al.Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats[J].Mol Biol Rep,2011,38(7):4327-4335.

[8]Fiordaliso F,Leri A,Cesselli D,et al.Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death[J].Diabetes,2001,50(10):2363-2375.

[9]Das A,Salloum FN,Filippone SM,et al.Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling[J].Basic Res Cardiol,2015,110(3):31.

[10]Gross ER,Hsu AK,Gross GJ.Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta[J].Diabetes,2007,56(1):127-136.

[11]Ghaboura N,Tamareille S,Ducluzeau PH,et al.Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3beta signaling[J].Basic Res Cardiol,2011,106(1):147-162.

[12]Drenger B,Ostrovsky IA,Barak M,et al.Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition[J].Anesthesiology,2011,114(6):1364-1372.

[13]Zhuo C,Wang Y,Wang X,et al.Cardioprotection by ischemic postconditioning is abolished in depressed rats:role of Akt and signal transducer and activator of transcription-3[J].Mol Cell Biochem,2011,346(1-2):39-47.

[14]Ye J.Emerging role of adipose tissue hypoxia in obesity and insulin resistance[J].Int J Obes(Lond),2009,33(1):54-66.

[15]Sam F,Duhaney TA,Sato K,et al.Adiponectin deficiency,diastolic dysfunction,and diastolic heart failure[J].Endocrinology,2010,151(1):322-331.

[16]Rothenbacher D,Brenner H,Marz W,et al.Adiponectin,risk of coronary heart disease and correlations with cardiovascular risk markers[J].Eur Heart J,2005,26(16):1640-1646.

[17]Yi W,Sun Y,Gao E,et al.Reduced cardioprotective action of adiponectin in high-fat diet-induced type II diabetic mice and its underlying mechanisms[J].Antioxid Redox Signal,2011,15(7):1779-1788.

[18]Wang B,Raedschelders K,Shravah J,et al.Differences in myocardial PTEN expression and Akt signalling in type 2 diabetic and nondiabetic patients undergoing coronary bypass surgery[J].Clin Endocrinol(Oxf),2011,74(6):705-713.

[19]Aragno M,Mastrocola R,Alloatti G,et al.Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats[J].Endocrinology,2008,149(1):380-388.

[20]Ghattas MH,Abo-Elmatty DM.Association of polymorphic markers of the catalase and superoxide dismutase genes with type 2 diabetes mellitus[J].DNA Cell Biol,2012,31(11):1598-1603.

[21]Lewis P,Stefanovic N,Pete J,et al.Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice[J].Circulation,2007,115(16):2178-2187.

[22]Orasanu G,Plutzky J.The pathologic continuum of diabetic vascular disease[J].J Am Coll Cardiol,2009,53(5 Suppl):S35-S42.

[23]Yokota T,Kinugawa S,Hirabayashi K,et al.Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice[J].Am J Physiol Heart Circ Physiol,2009,297(3):H1069-H1077.

[24]Coudronniere N,Villalba M,Englund N,et al.NF-kappa B activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-theta[J].Proc Natl Acad Sci USA,2000,97(7):3394-3399.

[25]Tang WH,Kravtsov GM,Sauert M,et al.Polyol pathway impairs the function of SERCA and RyR in ischemic-reperfused rat hearts by increasing oxidative modifications of these proteins[J].J Mol Cell Cardiol,2010,49(1):58-69.

[26]Forstermann U.Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal[J].Biol Chem,2006,387(12):1521-1533.

[27]Chen CA,Wang TY,Varadharaj S,et al.S-glutathionylation uncouples eNOS and regulates its cellular and vascular function[J].Nature,2010,468(7327):1115-1118.

[28]Koka S,Das A,Salloum FN,et al.Phosphodiesterase-5 inhibitor tadalafil attenuates oxidative stress and protects against myocardial ischemia/reperfusion injury in type 2 diabetic mice[J].Free Radic Biol Med,2013,60:80-88.

[29]Yang JT,Qian LB,Zhang FJ,et al.Cardioprotective effects of luteolin on ischemia/reperfusion injury in diabetic rats are modulated by eNOS and the mitochondrial permeability transition pathway[J].J Cardiovasc Pharmacol,2015,65(4):349-356.

[30]Okazaki T,Otani H,Shimazu T,et al.Ascorbic acid and N-acetyl cysteine prevent uncoupling of nitric oxide synthase and increase tolerance to ischemia/reperfusion injury in diabetic rat heart[J].Free Radic Res,2011,45(10):1173-1183.

[31]Maalouf RM,Eid AA,Gorin YC,et al.Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes[J].Am J Physiol Cell Physiol,2012,302(3):C597-C604.

[32]Okazaki T,Otani H,Shimazu T,et al.Reversal of inducible nitric oxide synthase uncoupling unmasks tolerance to ischemia/reperfusion injury in the diabetic rat heart[J].J Mol Cell Cardiol,2011,50(3):534-544.

[33]Murphy MP.Induction of mitochondrial ROS production by electrophilic lipids:a new pathway of redox signaling? American journal of physiology[J].Am J Physiol Heart Circ Physiol,2006,290(5):H1754-H1755.

[34]Duncan JG,Fong JL,Medeiros DM,et al.Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway[J].Circulation,2007,115(7):909-917.

[35]Yamagishi SI,Edelstein D,Du XL,et al.Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A[J].J Biol Chem,2001,276(27):25096-25100.

[36]Boudina S,Sena S,Theobald H,et al.Mitochondrial energetics in the heart in obesity-related diabetes:direct evidence for increased uncoupled respiration and activation of uncoupling proteins[J].Diabetes,2007,56(10):2457-2466.

备注/Memo

备注/Memo:
收稿日期:2016-10-26.基金项目:陕西省国际合作基金项目资助(2015KW-06) 通讯作者:杨丽芳,副主任医师,主要从事心肌保护研究 Email:yanglf@fmmu.edu.cn 作者简介:毛予,住院医师 Email:1107128975@qq.com
更新日期/Last Update: 1900-01-01