我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

Micro-RNA治疗心血管疾病的现状

《心脏杂志》[ISSN:1009-7236/CN:61-1268/R]

期数:
2014年第2期
页码:
225-228
栏目:
综述
出版日期:
2014-01-20

文章信息/Info

Title:
Current status and progress of micro-RNA therapeutic application in cardiovascular diseases
作者:
刘崇霞陈曹君高 群范 敏
(解放军323医院干一科,陕西 西安 710054)
Author(s):
LIU Chong-xia CHEN Cao-jun GAO Qun FAN Min
(Department of Cadre’s Ward, PLA 323 Hospital, Xi’an 710054, Shaanxi, China)
关键词:
心血管疾病micro-RNA治疗方法
Keywords:
cardiovascular disease micro-RNA therapeutic method
分类号:
R54
DOI:
-
文献标识码:
A
摘要:
心血管疾病(CVD)是导致人类死亡的首要元凶。长期以来,CVD防治药物的研究一直是医药科学领域的重要课题之一。近年来,随着生命科学研究的进展,特别是细胞生物学、分子生物学、基因组组学和蛋白质组学等研究技术和方法的改进,极大地促进了CVD防治药物的研究。本文将简要介绍MicroRNA治疗方法在CVD治疗中的现状。
Abstract:
Globally, cardiovascular diseases (CVD) have a higher death toll than any other diseases. Epidemiological surveys show that CVD will remain an important public health concern in medical science. With the development of cell and molecular biology, rapid progress has been made in pharmaceutical research for prevention and treatment of cardiovascular diseases. In this article we review the current status and progress of micro-RNA therapeutic applications in cardiovascular diseases.

参考文献/References

[1]Hill JA,Olson EN.Cardiac plasticity[J].N Engl J Med,2008,358(13):1370-1380.
[2]Fiedler J,Jazbutyte V,Kirchmaier BC,et al.MicroRNA-24 regulates vascularity after myocardial infarction[J].Circulation,2011,124(6):720-730.
[3]Bonauer A,Carmona G,Iwasaki M,et al.MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice[J].Science, 2009,324(5935):1710-1713.
[4]Care A,Catalucci D,Felicetti F,et al.MicroRNA-133 controls cardiac hypertrophy[J].Nature Medicine,2007,13(5):613-618.
[5]da Costa Martins PAdC,Salic K,Gladka MM,et al.MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling[J].Nat Cell Biol,2010,12(12):1220-1227.
[6]Thum T, Catalucci D,Bauersachs J.MicroRNAs:novel regulators in cardiac development and disease[J].Cardiovasc Res,2008,79(4):562-570.
[7]Fichtlscherer S,De Rosa S,Fox H,et al.Circulating microRNAs in patients with coronary artery disease[J].Cir Res,2010,107(5):677-684.
[8]Gupta SK,Bang C,Thum T.Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease[J].Cir Cardiovasc Genet,2010,3(5):484-488.
[9]Widera C,Gupta SK,Lorenzen JM,et al.Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome[J].J Mol Cell Cardiol,2011,51(5):872-875.
[10]Zampetaki A,Kiechl S,Drozdov I,et al.Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes[J].Circulation Research,2010,107(6):810-817.
[11]Hunter MP,Ismail N,Zhang X,et al.Detection of microRNA expression in human peripheral blood microvesicles[J].Plos One,2008,3(11):e3694.
[12]Valadi H,Ekstrom K,Bossios A,et al.Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J].Nat Cell Biol,2007,9(6): 654-659.
[13]Yang Y,Ago T,Zhai P,et al.Thioredoxin 1 negatively regulates angiotensin II-Induced cardiac hypertrophy through upregulation of miR-98/let-7[J].Cir Res,2011,108(3):305-313.
[14]Liu G,Friggeri A,Yang Y,et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis[J].J Exp Med,2010,207(8):1589-1597.
[15]Roy S,Khanna S,Hussain SR,et al.MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue[J].Cardiovasc Res,2009,82(1):21-29.
[16]Thum T,Chau N, Bhat B, et al. Comparison of different miR-21 inhibitor chemistries in a cardiac disease model[J]. J Clin Inv,2011,121(2):461-462.
[17]Thum T,Gross C,Fiedler J,et al.MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J].Nature,2008,456(7224):980-984.
[18]van Rooij E,Sutherland LB,Thatcher JE,et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J].Proc Natl Acad Sci U S A,2008,105(35):13027-13032.
[19]Boon RA,Seeger T,Heydt S,et al.MicroRNA-29 in aortic dilation:implications for aneurysm formation[J].Circ Res,2011,109(10):1115-1119.
[20]Caporali A,Meloni M,Voellenkle C,et al.Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia[J].Circulation,2011,123(3):282-291.
[21]van Solingen C,Seghers L,Bijkerk R,et al.Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis[J].J Cell Mol Med,2009,13(8A):1577-1585.
[22]Cha ST,Chen PS,Johansson G,et al.MicroRNA-519c suppresses hypoxia-inducible factor-1 alpha expression and tumor angiogenesis[J].Cancer Res,2010,70(7):2675-2685.
[23]McArthur K,Feng B,Wu Y,et al.MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy[J].Diabetes,2011,60(4):1314-1323.
[24]Porrello ER,Johnson BA,Aurora AB,et al.MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes[J].Circ Res,2011,109(6):670-679.
[25]Latronico MVG,Condorelli G.MicroRNAs and cardiac conduction[J].Current Drug Targets,2010,11(8): 907-912.
[26]Lu Y,Zhang Y,Wang N,et al.MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J].Circulation,2010,122(23):2378-2387.
[27]Weber C,Schober A,Zernecke A.MicroRNAs in arterial remodelling,inflammation and atherosclerosis[J].Current Drug Targets,2010,11(8):950-956.
[28]Davis BN,Hilyard AC,Lagna G,et al.SMAD proteins control DROSHA-mediated microRNA maturation[J].Nature,2008,454(7200):56-61.
[29]Boettger T,Beetz N,Kostin S,et al.Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster[J].J Clinical Inv,2009,119(9):2634-2647.
[30]Cordes KR,Sheehy NT,White MP,et al.miR-145 and miR-143 regulate smooth muscle cell fate and plasticity[J]. Nature,2009,460(7256):705-710.
[31]Cheng Y,Liu X,Yang J,et al.MicroRNA-145,a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation[J]. Circ Res,2009,105(2):158-166.
[32]Liu X,Cheng Y,Zhang S,et al.A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia[J].Circ Res,2009,104(4):476-487.
[33]Fernandez-Hernando C,Suarez Y,Rayner KJ,et al.MicroRNAs in lipid metabolism[J].Current Opinion Lipidol,2011,22(2):86-92.
[34]Lanford RE,Hildebrandt-Eriksen ES,Petri A,et al.Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection[J].Science,2010,327(5962):198-201.
[35]Elmen J,Lindow M,Silahtaroglu A,et al.Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver[J].Nucleic Acids Res,2008,36(4):1153-1162.
[36]Horie T,Ono K,Horiguchi M,et al.MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo[J].Proc Natl Acad Sci U S A,2010,107(40):17321-17326.
[37]Marquart TJ,Allen RM,Ory DS,et al.miR-33 links SREBP-2 induction to repression of sterol transporters[J].Proc Natl Acad Sci U S A,2010,107(27):12228-12232.
[38]Najafi-Shoushtari SH,Kristo F,Li Y,et al.MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis[J].Science,2010,328(5985):1566-1569.
[39]Rayner KJ,Esau CC,Hussain FN,et al.Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides[J].Nature,2011,478(7369):404-407.
[40]Rayner KJ,Suarez Y,Davalos A,et al.MiR-33 contributes to the regulation of cholesterol homeostasis[J].Science,2010,328(5985):1570-1573.

备注/Memo

备注/Memo:
收稿日期:2013-09-16.
作者简介:刘崇霞,主治医师Email: chongxialiu@163.com
更新日期/Last Update: 2014-01-16